Journal of the British Interplanetary Society

VOLUME 63 2010

<table>
<thead>
<tr>
<th>Issue No</th>
<th>Themes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Papers</td>
</tr>
<tr>
<td>2</td>
<td>General Papers</td>
</tr>
<tr>
<td>3</td>
<td>General Papers</td>
</tr>
<tr>
<td>4</td>
<td>SKYLON Infrastructure</td>
</tr>
<tr>
<td>5/6</td>
<td>General Papers</td>
</tr>
<tr>
<td>7</td>
<td>General Papers</td>
</tr>
<tr>
<td>8</td>
<td>General Papers</td>
</tr>
<tr>
<td></td>
<td>Extraterrestrial Studies</td>
</tr>
<tr>
<td>9/10</td>
<td>Nuclear and Emerging Technologies for Space (NETS-2011)</td>
</tr>
<tr>
<td>11/12</td>
<td>General Papers</td>
</tr>
<tr>
<td></td>
<td>Interstellar Studies</td>
</tr>
<tr>
<td></td>
<td>NETS-2011</td>
</tr>
</tbody>
</table>

* * * *

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aghababaie A. et al.</td>
<td>Wall Angle Effects on Nozzle Separation Stability</td>
<td>162</td>
</tr>
<tr>
<td>Alkhodari S.B. et al.</td>
<td>Satellite Attitude Control with using a Combined Attitude and Thermal Control System with the Active Force Control</td>
<td>243</td>
</tr>
<tr>
<td>Baxter S.</td>
<td>Project Icarus: The Challenges of Mission Longevity</td>
<td>426</td>
</tr>
<tr>
<td>Baxter S.</td>
<td>Project Icarus: Three Roads to the Stars</td>
<td>444</td>
</tr>
<tr>
<td>Beech M.</td>
<td>A Dark Sun Rising: It’s a Solar Wrap</td>
<td>104</td>
</tr>
<tr>
<td>Bielicki D.M.</td>
<td>Air Law & Space Law – Historical Aspects and Perspectives for Future</td>
<td>260</td>
</tr>
<tr>
<td>Brunskill C. et al.</td>
<td>Exploration of Lunar Craters using a Tracked Microrover Concept for the ESA Lunar Robotics Challenge</td>
<td>267</td>
</tr>
<tr>
<td>Carrigan Jr. R.A.</td>
<td>Starry Messages: Searching for Signatures of Interstellar Archaeology</td>
<td>90</td>
</tr>
<tr>
<td>Cartin D.</td>
<td>On the Maximum Sufficient Range of Interstellar Vessels</td>
<td>218</td>
</tr>
<tr>
<td>Cockell C.S.</td>
<td>Essay on the Causes and Consequences of Extraterrestrial Tyranny</td>
<td>15</td>
</tr>
<tr>
<td>Crawford I.A.</td>
<td>Project Icarus: Astronomical Considerations Relating to the Choice of Target Star</td>
<td>419</td>
</tr>
<tr>
<td>DeVito C.L.</td>
<td>Alien Mathematics</td>
<td>306</td>
</tr>
<tr>
<td>El-Genk M.S.</td>
<td>Post-Operation Storage for Space Fission Reactors</td>
<td>61</td>
</tr>
<tr>
<td>Elliott J.O. et al.</td>
<td>In-Situ Missions for the Exploration of Titan’s Lakes</td>
<td>376</td>
</tr>
<tr>
<td>Feast S et al.</td>
<td>A Design for an Orbital Assembly Facility for Complex Missions</td>
<td>151</td>
</tr>
<tr>
<td>Gold R.E. et al.</td>
<td>Uranus Mission Concept Options</td>
<td>357</td>
</tr>
<tr>
<td>Gopalasawmi R.</td>
<td>Critical Factors in Conceptual Design and Techno-Economics of Reusable Spaceplanes</td>
<td>395</td>
</tr>
<tr>
<td>Hempson M. et al.</td>
<td>The Requirement Generation Process for the SKYLON Launch System</td>
<td>122</td>
</tr>
<tr>
<td>Hempson M.</td>
<td>An Analysis of the SKYLON Infrastructure</td>
<td>129</td>
</tr>
<tr>
<td>Hempson M. et al.</td>
<td>Technical and Operations Design of the SKYLON Upper Stage</td>
<td>136</td>
</tr>
<tr>
<td>Hempson M</td>
<td>The Interaction Between SKYLON the International Space Station</td>
<td>145</td>
</tr>
<tr>
<td>Hensher M.</td>
<td>Is “Alien Abduction” Extraterrestrial Visitation? Developing Prospective Study Designs to Gather Physical Evidence of Alleged “Alien Abduction”</td>
<td>310</td>
</tr>
<tr>
<td>Hoifeldt N. et al.</td>
<td>Design of a Low Specific Mass 10 kWe Nuclear Reactor for Space Propulsion</td>
<td>330</td>
</tr>
<tr>
<td>Kammash T.</td>
<td>Self-Fueling Fusion Hybrid Reactor for Space Power and Propulsion</td>
<td>384</td>
</tr>
<tr>
<td>Kham M.O. et al.</td>
<td>Joint Radioisotope Electric Propulsion Studies – Neptune System Explorer</td>
<td>454</td>
</tr>
<tr>
<td>Lorenz R.D.</td>
<td>A Simple Model for Radioisotope Power System Performance in the Titan Environment</td>
<td>9</td>
</tr>
<tr>
<td>Maccone C.</td>
<td>The Statistical Fermi Paradox</td>
<td>222</td>
</tr>
<tr>
<td>MacLeod C. et al.</td>
<td>A Reconsideration of Electrostatically Accelerated and Confined Nuclear Fusion for Space Applications</td>
<td>192</td>
</tr>
<tr>
<td>Matloff G.L.</td>
<td>RedGiants and Solar Sails</td>
<td>74</td>
</tr>
<tr>
<td>McConnell B.S. et al.</td>
<td>Reference Design for a Simple, Durable and Refuelable Interplanetary Spacecraft</td>
<td>108</td>
</tr>
<tr>
<td>Miley G.H. et al.</td>
<td>Fusion Power Sources for Mars Exploration</td>
<td>371</td>
</tr>
<tr>
<td>Miley G.H. et al.</td>
<td>Fusion Space Propulsion using Fast-Ignition Inertial Confinement Fusion (FI-ICF)</td>
<td>387</td>
</tr>
<tr>
<td>Millis M.G.</td>
<td>Predictions for Civilian Space Flight Based on Patterns from History</td>
<td>406</td>
</tr>
<tr>
<td>Millis M.G.</td>
<td>First Interstellar Mission, Considering Energy and Incessant Obsolescence</td>
<td>434</td>
</tr>
<tr>
<td>Moore D.</td>
<td>Lost in Time and Lost in Space: The Consequences of Temporal Dispersion for Exosolar Technological Civilisations</td>
<td>297</td>
</tr>
<tr>
<td>Pollock G.E. et al.</td>
<td>Propellantless Formation Flight Via Coulomb and Lorentz Forces</td>
<td>2</td>
</tr>
<tr>
<td>Puthoff H.E.</td>
<td>Advanced Space Propulsion Based on Vacuum (Spacetime Metric) Engineering</td>
<td>81</td>
</tr>
<tr>
<td>Spilker T.R. et al.</td>
<td>Saturn Ring Observer Concept Architecture Options</td>
<td>345</td>
</tr>
<tr>
<td>Werner J. et al.</td>
<td>An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion</td>
<td>323</td>
</tr>
<tr>
<td>Winterberg F.</td>
<td>Convergent Shock Wave Ignition of High Gain Magnetised Fusion for Hybrid Chemical-Nuclear Pulse Propulsion</td>
<td>292</td>
</tr>
<tr>
<td>Worral M. et al.</td>
<td>HTGR Power System Technology for Space Exploration Missions</td>
<td>449</td>
</tr>
<tr>
<td>Yemets V. et al.</td>
<td>Is the Combustible Inertial Pico Launch Vehicle Feasible?</td>
<td>249</td>
</tr>
<tr>
<td>Zampino E.</td>
<td>Lorentz Transformation Expressed in Complex and Split-Complex Form</td>
<td>282</td>
</tr>
<tr>
<td>Zebbiche T.</td>
<td>Supersonic Axisymmetric Minimum Length Nozzle Conception at High Temperature with Application for Air</td>
<td>171</td>
</tr>
</tbody>
</table>
Aerodynamics
- minimum length nozzle 171
- separation in nozzles 162

Archaeology 90

Asteroids
- Trojans 351

Astrobiology 419

Commercial spaceflight 53,406

Control systems 243

Daedalus 426,444

Dyson Sphere 90,104

Economics 53

Electric propulsion 108,345,351,454

Electromagnetic activation 192

Electrostatic confinement 192,371

Extra-terrestrial civilisation 90,222,294,303

Extra-terrestrial UFOs 307

Fermi paradox 90,222,294

Formation flight 2

Fusion ignition 289,387

Heat pipes 336

HOTOL 122

History
- air and space law 260
- commercial spaceflight 406

Icarus 419,426,444

Inertial confinement 387

Infrastructure
- Skylon 129,151
- space exploration 42
- test facilities 323

International Space Station 145

Interstellar propulsion 74,434

Interstellar travel 74,218,419,426,434,444

Jupiter
- radiation 363

Launch vehicles
- combustible inertial 249
- Skylon 122,129,136
- reusable 122,395

Lorentz transformations 282

Manned spaceflight
- interstellar emigration 74
- Mars lander 151
- Moon commercialisation 53
- nuclear power 61
- safety 61
- simple interplanetary craft 108
- Skylon 129,145
- strategy 42

Mars
- colonisation 371
- manned landing 151
- robots 206
- settlements 371

Mathematics 303

Mission design 345,351,357,363,376,454

Moon
- colonisation 53
- exploration 53,267

Neptune
- orbiter and probe 454

Orbital mechanics 2,136

Planets
- extrasolar 419
- Jupiter 363
- Mars 151,371
- Neptune 454
- robotic exploration 206
- Saturn 345,363
- Uranus 357
- Venus 336

Policy
- commercial spaceflight 406
- exploration strategy 42
- space settlements 15

Propulsion methods
- atmospheric 395
- combustible inertial 249
- Coulomb force 2
- electric 345,351,454
- electrothermal 108
- fusion 192,289,384,387
- interstellar 74,434
- Lorentz force 2
- nuclear thermal 323
- rocket nozzles 162,171
- solar sail 74
- vacuum engineering 82
- warp drive 82
- wormhole 82

Radiation 363

Relativity 282

Robotics 42,206,267

Rocket
- combustible inertial 249
- nozzle 162,171
- Roving vehicles 206,267

Satellites
- attitude control 243
- thermal control 243,336

Saturn
- radiation 363
- ring probe 345

SETI
- alien abduction 307
- Drake equation 90,222
- Fermi paradox 90,222,294
- planetary engineering 104
- target civilisations 90,294

Skylon
- infrastructure 129,151
- personnel module 129,145
- reusable launch vehicle 122,129,136,145,151

Solar sails 74

Space colonisation 53,434

Space law 260

Space power
- nuclear fission 61,330,449
- nuclear fusion 371,384
- Stirling generator 9,330,351,357,454

Space safety 61,449

Space settlements 15

Space station
- assembly 151
- ISS 145

Statistics 222

Structures
- consumable 108,249
- inflatable 108
- stellar wrap 104

Sun
- neighbouring stars 218,419
- red giant phase 74

Terrain assessment 206

Test facilities
- nuclear rockets 323

Titan
- lander 376
- submersible 376
- power systems 9

Trojan asteroids 351

Troy Mars mission 151

UK
- orbital assembly facility 151

Uranus
- Skylon 122,129,136,145,151

Venus
- lander 336

Terraforming 43

Testicular cells 458

Thermal control 452

Thermal protection 478

Titan
- balloon 2
- Cassini 295
- UAV 118

United Kingdom
- HEM 419
- JWST 401
- Skylon 412
- University of Glasgow 404

Unmanned Air Vehicle 118

USSR
- planetary mapping 63
- mapping 63
- Waine, Eric M. 114
SUBJECT INDEX - Contd